21 research outputs found

    Squeezing in the weakly interacting uniform Bose condensate

    Full text link
    We investigate the presence of squeezing in the weakly repulsive uniform Bose gas, in both the condensate mode and in the nonzero opposite-momenta mode pairs, using two different variational formulations. We explore the U(1) symmetry breaking and Goldstone's theorem in the context of a squeezed coherent variational wavefunction, and present the associated Ward identity. We show that squeezing of the condensate mode is absent at the mean field Hartree-Fock-Bogoliubov level and emerges as a result of fluctuations about mean field as a finite volume effect, which vanishes in the thermodynamic limit. On the other hand, the squeezing of the excitations about the condensate survives the thermodynamic limit and is interpreted in terms of density-phase variables using a number-conserving formulation of the interacting Bose gas.Comment: 8 pages, 3 figures. Version 2 (Sept'06): expanded discussion

    Transition Temperature of Dilute, Weakly Repulsive Bose Gas

    Full text link
    Within a quasiparticle framework, we reconsider the issue of computing the Bose-Einstein condensation temperature (TcT_c) in a weakly non-ideal Bose gas. The main result of this and previous investigations is that TcT_c increases with the scattering length aa, with the leading dependence being either linear or log-linear in aa. The calculation of TcT_c reduces to that of computing the excitation spectrum near the transition. We report two approaches to regularizing the infrared divergence at the transition point. One leads to a a∣ln⁑a∣a\sqrt{|\ln{a}|}-like shift in TcT_c, and the other allows numerical calculations for the shift.Comment: 8 pages, 3 figures, revtex

    Transverse Spin Diffusion in a Dilute Spin-Polarized Degenerate Fermi Gas

    Full text link
    We re-examine the calculation of the transverse spin-diffusion coefficient in a dilute degenerate spin-polarized Fermi gas, for the case of s-wave scattering. The special feature of this limit is that the dependence of the spin diffusion coefficient on temperature and field can be calculated explicitly with no further approximations. This exact solution uncovers a novel intermediate behavior between the high field spin-rotation dominated regime in which DβŠ₯∝Hβˆ’2D_{\bot} \propto H^{-2}, Dβˆ₯∝Tβˆ’2D_{\parallel} \propto T^{-2}, and the low-field isotropic, collision dominated regime with DβŠ₯=Dβˆ₯∝Tβˆ’2D_{\bot} = D_{\parallel} \propto T^{-2}. In this intermediate regime, DβŠ₯,βˆ₯∝Tβˆ’2D_{\bot ,\parallel} \propto T^{-2} but DβŠ₯β‰ Dβˆ₯D_{\bot} \neq D_{\parallel}. We also present an analytical calculation of the self-energy in the s-wave approximation for a dilute spin-polarized Fermi gas, at zero temperature. This emphasizes the failure of the conventional Fermi-liquid phase space arguments for processes involving spin flips. We close by reviewing the evidence for the existence of the intermediate regime in experiments on weakly spin-polarized 3He^3{\rm He} and 3Heβˆ’4He^3{\rm He} - ^4{\rm He} mixtures.Comment: 38 pages, Latex-Revtex, 9 PostScript figures. Minor revisions, misprints corrected, references adde

    Spin-Flavor Separation and Non-Fermi Liquid Behavior in the Multichannel Kondo Problem: A Large N Approach

    Full text link
    We consider a SU(N)Γ—SU(M)SU(N)\times SU(M) generalization of the multichannel single-impurity Kondo model which we solve analytically in the limit Nβ†’βˆžN\rightarrow \infty, Mβ†’βˆžM\rightarrow\infty, with Ξ³=M/N\gamma=M/N fixed. Non-Fermi liquid behavior of the single electron Green function and of the local spin and flavor susceptibilities occurs in both regimes, N≀MN\le M and N>MN > M, with leading critical exponents {\em identical} to those found in the conformal field theory solution for {\em all} NN and MM (with Mβ‰₯2M\ge 2). We explain this remarkable agreement and connect it to ``spin-flavor separation", the essential feature of the non-Fermi-liquid fixed point of the multichannel Kondo problem.Comment: 14 pages, 1 Figure (Poscript file attached), Revte

    Fast counting with tensor networks

    Full text link
    We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying assignments of that formula, and use graph theoretical methods to determine favorable orders of contraction. We employ our heuristics for the solution of #P-hard counting boolean satisfiability (#SAT) problems, namely monotone #1-in-3SAT and #Cubic-Vertex-Cover, and find that they outperform state-of-the-art solvers by a significant margin.Comment: v2: added results for monotone #1-in-3SAT; published versio

    Tensor network method for reversible classical computation

    Full text link
    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017)]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.We thank Justin Reyes, Oskar Pfeffer, and Lei Zhang for many useful discussions. The computations were carried out at Boston University's Shared Computing Cluster. We acknowledge the Condensed Matter Theory Visitors Program at Boston University for support. Z.-C. Y. and C. C. are supported by DOE Grant No. DE-FG02-06ER46316. E.R.M. is supported by NSF Grant No. CCF-1525943. (Condensed Matter Theory Visitors Program at Boston University; DE-FG02-06ER46316 - DOE; CCF-1525943 - NSF)Accepted manuscrip

    Optimal Path to Epigenetic Switching

    Full text link
    We use large deviation methods to calculate rates of noise-induced transitions between states in multistable genetic networks. We analyze a synthetic biochemical circuit, the toggle switch, and compare the results to those obtained from a numerical solution of the master equation.Comment: 5 pages. 2 figures, uses revtex 4. PR-E reviewed for publicatio
    corecore